
Supporting random wave models: a quantum mechanical approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L495

(http://iopscience.iop.org/0305-4470/36/38/102)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L495–L502 PII: S0305-4470(03)62565-5

LETTER TO THE EDITOR

Supporting random wave models: a quantum
mechanical approach

Juan Diego Urbina and Klaus Richter

Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

E-mail: juan-diego.urbina@physik.uni-regensburg.de

Received 23 April 2003, in final form 17 July 2003
Published 10 September 2003
Online at stacks.iop.org/JPhysA/36/L495

Abstract
We show how two-point correlation functions recently derived within non-
isotropic random wave models can be obtained in the appropriate limit in terms
of the exact Green function of the quantum system. Since no statistical model
is required for this derivation, this shows that taking the wavefunctions as
Gaussian processes is the only assumption of those models. We also show
how for clean systems the two-point correlation function based on an energy
average defines a Gaussian theory which substantially reduces the spurious
contributions coming from the normalization problem.

PACS numbers: 05.45.Mt, 05.40.−a

Since Berry’s seminal paper in 1977 [1], the so-called random wave model (RWM) has
become by far the most popular and successful tool to describe the statistical properties of
wavefunctions of classically chaotic systems. In this approach wavefunctions are modelled
by a random superposition of plane waves. Its applications range from the realm of optics [2],
passing by the general problem of wave mechanics in disordered media [3, 4] to important
issues in mesoscopic systems [5]. Owing to this robustness this approach has been regarded
as the indicator of wave signatures of classical chaotic dynamics [6].

The reasons for this success can be traced back to two fundamental points. First, it can be
formally shown that such a random wavefunction is a stationary random process [7] (roughly
speaking a function taking random values at each point); second, such a random process
is Gaussian, namely, it is uniquely characterized by a two-point correlation function which
expresses fundamental symmetries, like the isotropy of free space. The fact that the process is
Gaussian represents a considerable advantage in an operational sense since it provides us with
a set of rules to cope with averages over complicated expressions in the way Wick’s theorem
and its variants do. At the same time the generality of the random wave two-point correlation
makes the theory a remarkably good approximation when the effect of the boundaries can be
neglected, as for bulk properties.
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When applied to real quantum systems, however, there still remain limitations related
to the above-mentioned ingredients. Such limitations have recently received attention in the
context of nodal lines and nodal domains statistics [6]. Concerning the Gaussian assumption,
a formal proof showing that a chaotic wavefunction is indeed a Gaussian process is still
lacking. Even more, as noted in [8] the Gaussian distribution explicitly contradicts the
normalization condition for the wavefunction. In practical terms this means that, when
dealing with statistics beyond the two-point correlation function, the Gaussian distribution
produces spurious non-physical contributions, and attempts to construct a RWM respecting
the normalization constraint lead to severe mathematical difficulties [9]. Still this assumption
is supported by many arguments based on random matrix theory [5], quantum ergodicity [6],
information theory [9] and Berry’s original semiclassical picture [1]. Impressive numerical
results also support the conjecture at the level of one-point statistics [10], and evidence for
higher order statistics is given in [5, 6]. Hence, it is appealing to look for a RWM which
minimizes the spurious contributions due to the normalization problem while keeping the
wavefunction distribution still Gaussian.

Concerning the isotropic character of the theory, constructing a random superposition
of waves satisfying both the Schrödinger equation and boundary conditions turns out to be
at least as difficult as solving the full quantum mechanical problem by means of standard
techniques. To our knowledge the attempts in the direction of a non-isotropic RWM can only
deal with highly idealized boundaries such as an infinite straight wall [11], a linear potential
barrier [12] and the edge between two infinite lines enclosing an angle of a rational multiple
of π [13]. Also in [14] a modification of the RWM to include finite size effects is presented.
The fact that these approximations already produce non-trivial deviations from the isotropic
case indicates the relevance of including arbitrary boundaries.

Our aim in this letter is twofold: first, we shall show that the mentioned results for
the two-point correlation function defining the non-isotropic and finite-size RWM can be
derived from quantum mechanical expressions, namely, they are independent of any statistical
assumption about the wavefunction. Second, we shall show how for a statistical description
of wavefunctions using an energy ensemble average, the spurious contributions coming from
the normalization problem are of order O(1/N) with N being the number of members of the
ensemble, making their effect negligible for high energies.

1. Isotropic and non-isotropic random wave models

We consider solutions of the Schrödinger equation
(− h̄2

2m
∇2 + V (�r))ψn(�r) = Enψn(�r) for

a closed system where the corresponding classical dynamics is chaotic (in the following we
take 2m = 1). The RWM assumes the statistical description of an ensemble of wavefunctions
mimicked by a random superposition of M plane waves, ψr(�r) = ∑M

j=1 aj exp(i�k · �r). Here,
a1, . . . , aM is a set of independent random variables with a variance such that the wavefunction
ψr(�r) is normalized on average, and k(�r) =

√
e − V (�r)/h̄ is the local wave number with e

the mean energy of the states under study,
For the sake of comparison we shall focus on the following averages, used for the nodal

counting statistics (we follow the notation of Berry [11]):

B(�r) := 〈ψ(�r)2〉 Dx(�r) :=
〈(

∂ψ(�r)
∂x

)2
〉

Dy(�r) :=
〈(

∂ψ(�r)
∂y

)2
〉

Ky(�r) :=
〈
ψ(�r)∂ψ(�r)

∂y

〉
.

(1)
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We wish to stress, however, that the RWM, as it is Gaussian, can deal with far more general
averages. For billiard systems the isotropic RWM (denoted by a superscript i) is given by the
ensemble

ψi(�r) =
√

2

J

J∑
j=1

cos(kx cos θj + ky sin θj + φj ) (2)

and the average 〈· · ·〉 is defined by integration over a set of independent random phases
φj ∈ (0, 2π ]. We also choose θj = 2πj/J , where the limit J → ∞ is always taken after
averaging over the phases φ. Explicit calculation then gives the following results [2]:

Bi(�r) = 1 Di
x(�r) = k2

2
Di

y(�r) = k2

2
Ki

y(�r) = 0. (3)

These results represent bulk approximations to the real situation, since boundary effects are
completely neglected. In order to improve this limitation, the following ensemble of non-
isotropic (ni) superpositions of random waves was introduced in [11] to take into account
the effect of a straight infinite boundary at y = y0 on which we demand the wavefunction to
satisfy Dirichlet (D) or Neumann (N) boundary conditions:

ψD(�r) =
√

4

J

J∑
j=1

sin k(y − y0) cos(kx cos θj + φj ) (4)

ψN(�r) =
√

4

J

J∑
j=1

cos k(y − y0) cos(kx cos θj + φj ). (5)

With the averaging procedure as in the isotropic case, one obtains for the Dirichlet (upper
sign) and Neumann (lower sign) cases [11]:

Bni(�r) = 1 ∓ J0(2k(y − y0))

Dni
x (�r) = k2

2
(1 ∓ J0(2k(y − y0)) ∓ J2(2k(y − y0)))

Dni
y (�r) = k2

2
(1 ± J0(2k(y − y0)) ∓ J2(2k(y − y0)))

Kni
y (�r) = ±kJ1(2k(y − y0)).

(6)

For more general situations where the confining potential is smooth (S), Bies and Heller
[12] introduced the following ensemble of random Airy functions Ai(x) to satisfy locally the
Schrödinger equation for a linear ramp potential V (x, y) = Vy:

ψS(�r) = 1√
J

J∑
j=1

Ai[�(y,Qj )] exp[i(Qjx + φj )]. (7)

Here

�(y,Q) =
(

V

h̄2

) 1
3

(y − y0) +

(
h̄2

V

) 2
3

Q2
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and y0 = e/V is the turning point in the direction of the linear ramp, fixed by the mean energy
e of the eigenstates under study. The phases φj are defined as usual and provide the averaging,
while Qj ∈ [−∞,∞]. Explicit calculation then gives [12, 15]:

BS(�r) =
∫ ∞

0
Ai2 [�(y,Q)] dQ DS

x (�r) =
∫ ∞

0
Q2Ai2 [�(y,Q)] dQ

DS
y (�r) =

∫ ∞

0
Ai′2 [�(y,Q)] dQ KS

y (�r) =
∫ ∞

0
Ai [�(y,Q)] Ai′ [�(y,Q)] dQ

(8)

where Ai′(x) is the derivative of the Airy function.

2. The quantum description

We consider a set of normalized solutions ψn(�r) of the Schrödinger equation with non-
degenerate eigenvalues En lying inside the interval W = [

e − δe
2 , e + δe

2

]
. Considering W as a

range of energies with almost constant mean level spacing �(e), the number of states within

the interval is N = δe
�(e)

(in general N = ∫ e+ δe
2

e− δe
2

ρ(E) dE with ρ(E) being the level density).

In the high-energy limit we are interested in, N � 1 with δe
e

� 1 are well-defined limits
which we shall always assume implicitly. The two-point correlation function

F(�r1, �r2) := 〈ψ(�r1)ψ
∗(�r2)〉 := 1

N

∑
En∈W

ψn(�r1)ψ
∗
n (�r2) (9)

can be used to calculate the averages in equation (1) by differentiation:

B(�r) := [F(�r1, �r2)]�r1=�r2=�r

Dx(�r) :=
[

∂2

∂x1∂x2
F(�r1, �r2)

]
�r1=�r2=�r

Dy(�r) :=
[

∂2

∂y1∂y2
F(�r1, �r2)

]
�r1=�r2=�r

Ky(�r) :=
[

1

2

(
∂

∂y1
+

∂

∂y2

)
F(�r1, �r2)

]
�r1=�r2=�r

.

(10)

It is convenient to use the Green function of the system,

G(�r1, �r2, E + i0+) =
∞∑

n=1

ψn(�r1)ψ
∗
n (�r2)

E − En + i0+
(11)

to obtain the expression

F(�r1, �r2) = �(e)

2π i

1

δe

∫ e+ δe
2

e− δe
2

(G∗(�r1, �r2, E + i0+) − G(�r2, �r1, E + i0+)) dE. (12)

Note that this is an exact result and the common approximation F(�r1, �r2) ∼ (G∗(�r1, �r2,

e + i0+) − G(�r2, �r1, e + i0+)) [16] is not valid in general and requires further assumptions.
Even more, the additional energy integration in equation (12) will turn out to be essential.

Different approximations to the Green function valid under different situations can now
be used to study the corresponding wavefunction statistics.
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3. The bulk contribution and finite size effects

For billiard systems the bulk (b) results are obtained by using the free propagator given in two
dimensions by the Hankel function G0(�r2, �r1, E + i0+) = i

4h̄H
(1)
0

(√
E

h̄
|�r1 − �r2|

)
instead of the

exact Green function. The corresponding contribution to the two-point correlation is

Fb(�r1, �r2) = 1

A

1

δe

∫ e+ δe
2

e− δe
2

J0

(√
E

h̄
|�r1 − �r2|

)
dE (13)

where A is the billiard area. Using equations (10) and (13) we easily recover the results in
equation (3) correctly normalized. Further analysis of expression (13) shows that it reduces
to Berry’s result [1]

〈ψ(�r1)ψ(�r2)〉b = 1

A
J0

(√
e

h̄
|�r1 − �r2|

)
(14)

when |�r1 − �r2| � √
4A/π , while it decays much faster for |�r1 − �r2| �

√
4A/π as long as

δe � h̄
√

πe/4A. Noting that
√

4A/π is just the average system linear size L we see that
equation (13) actually defines a RWM which incorporates finite size effects when the average
is taken on scales larger than the ballistic Thouless energy, eTh = h̄

√
e/L. Equation (13) then

provides an analytical expression for the correlation function defined in [14].

4. The case of an infinite straight barrier

For this situation we construct Green functions with the correct parity under the reflection
symmetry with respect to the line y = y0 by means of the method of images. The symmetric
and antisymmetric combinations give the corresponding two-point correlation for Dirichlet
(upper sign) and Neumann (lower sign) boundary conditions as

FD,N(�r1, �r2) = 1

A

1

δe

∫ e+ δe
2

e− δe
2

[
J0

(√
E

h̄

√
(x1 − x2)2 + (y1 − y2)2

)

± J0

(√
E

h̄

√
(x1 − x2)2 + (2y0 − y1 − y2)2

)]
dE. (15)

Using this correlation function and equation (10) we obtain the averages defined in
equation (1). Berry’s results equation (6) are again obtained in the limit of very short distances

to the boundary |y − y0| �
√

A
8π

.

5. The infinite, smooth barrier

For a particle in the potential V (x, y) = Vy, the Schrödinger equation is separable. The
solutions along the x direction are plane waves and in the y direction Airy functions. Hence
we have

ψk,e(x, y) =
(

8π3

4h̄4V

) 1
6

exp (−ikx)Ai

[(
V

h̄2

) 1
3 (

y − e

V

)]
(16)

and for the Green function

G(�r1, �r2, E + i0+) =
∫ ∞

−∞

∫ ∞

−∞

ψk,e(�r1)ψ
∗
k,e(�r2)

E − e − h̄2k2 + i0+
de dk. (17)
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Including this result into equation (12) we find for the correlation function:

FS(�r1, �r2) =
(

2π3

h̄4V

) 1
3 1

N

∫ e+ δe
2

e− δe
2

∫ ∞

0
cos (k(x1 − x2))

Ai

[(
V

h̄2

) 1
3
(

y1 − E − h̄2k2

V

)]
Ai

[(
V

h̄2

) 1
3
(

y2 − E − h̄2k2

V

)]
dk dE.

(18)

Together with the relations (10) again, one obtains equation (8) in the limit �(e) → 0.
To summarize so far, we obtained the one-point averages, equation (1), for a closed

system from pure quantum mechanical considerations without appealing to any statistical
assumption about the wavefunction. The known RWM results (3), (6), (8) are then derived
in the appropriate limits (either short distances or infinite system size). The generalization to
any other average bilinear in the wavefunction is straightforward.

6. The normalization problem

There is a prominent counter argument against the Gaussian assumption first presented to
our knowledge in [4] and further explored in [9], which deserves special attention. It is the
apparent contradiction between the normalization of the members of the ensemble and the
Gaussian distribution of the wavefunction amplitudes. Mathematically this can be stated in
the following way. Consider the functional

η[ψ] =
∫

|ψ(�r)|2 d�r (19)

where ψ(�r) is a member of the ensemble we use to describe the statistical properties of the
wavefunction. One constraint we must impose is the normalization of all ψ(�r), expressed by
the vanishing of the ensemble variance Var(η) = 〈(η[ψ])2〉−(〈η[ψ]〉)2. If the wavefunction’s
distribution is Gaussian, we obtain

Var(η) = 2
∫ ∫

|〈ψ(�r1)ψ
∗(�r2)〉|2 d�r1 d�r2. (20)

This is in clear contradiction to the normalization condition Var(η) = 0. Here we show
that this variance is of order Var(η) = O(1/N). To this end we recall the definition of the
two-point correlation, equation (9), and note that the ψn(�r) are eigenfunctions of the same
Hamilton operator, i.e, they form an orthonormal set:∫

ψi(�r)ψ∗
j (�r) d�r = δi,j . (21)

Then it is easy to obtain the following composition rule for the two-point correlation:∫
〈ψ(�r1)ψ

∗(�r)〉〈ψ(�r)ψ∗(�r2)〉 d�r = 1

N
〈ψ(�r1)ψ

∗(�r2)〉. (22)

Since 〈ψ(�r1)ψ
∗(�r2)〉 converges in the limit e

�e
∼ const, N → ∞, we see that indeed Var(η)

converges to zero as O(1/N).
This behaviour of Var(η), relying on the fact that an energy ensemble average is taken,

differs from the case of disordered systems where the lack of orthogonality between the
different members of the ensemble (since they are eigenfunctions of different Hamiltonians
corresponding to different disorder realizations) leads to an expression for Var(η) of
order O(1).
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It is important to note that the extra energy average is essential to satisfy equation (22).
For example, a simple calculation shows that Berry’s result, equation (14), does not satisfy the
composition rule, while our result (13) does it as long as δe � eTh. This is a particular case of a
more general statement saying that under certain conditions approximate Green functions will
make the correlation function satisfy the composition rule. The proof of this result requires
the use of semiclassical techniques and will be presented elsewhere [17].

7. Concluding remarks

We have shown that all the two-point correlation functions used to fix the different random
wave models, (isotropic, non-isotropic, for a smooth boundary and including finite size effects)
can be derived in the appropriate limit of the exact quantum mechanical expressions. To this
end we do not use any statistical assumption about the wavefunctions; in fact, these results
are independent of the character of the classical system, i.e., regular, mixed or chaotic1.
Also, we showed that for clean chaotic systems the use of an energy ensemble reduces the
spurious contributions coming from the normalization problem without affecting the Gaussian
assumption. This result only requires the consistent use of the quantum mechanical definition
of the correlation function.

A Gaussian field with a correlation given in terms of the exact Green function of the
system and the energy average carefully taken into account represents a generalization which
includes all known RWMs as limiting cases and successfully takes into account boundary
and normalization effects for any closed, clean chaotic system. For general shapes (such as
those studied in [13]) and boundary conditions (such as the mixed case presented in [15]) the
exact quantum approach presented here cannot be analytically performed. An approach using
the semiclassical Green function to derive the asymptotic expressions for the correlations
presented here and in [13, 15]) is then an adequate method and will be the subject of a separate
communication [17].
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